Investigations of the EPR g Factors of NaCrS₂ and NaCrSe₂

Xiao-Xuan Wu^{a,b,c}, Wen-Chen Zheng^{b,c}, Qing Zhou^b, and Yang Mei^b

a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P.R. China
b Department of Material Science, Sichuan University, Chengdu 610064, P.R. China
c International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China

Reprint requests to Dr. W.-C. Z; E-mail: zhengwcl@163.com

Z. Naturforsch. **60a**, 369 – 372 (2005); received January 4, 2005

The EPR g factors of Cr^{3+} in NaCrS2 and NaCrSe2 crystals are calculated from the high-order perturbation formulas based on the one-spin-orbit (SO)-coupling-parameter (i.e., the SO-coupling-parameter of the central $3d^n$ ion) as well as the two-SO-coupling-parameter (i.e., the SO-coupling-parameter of the $3d^n$ ion and that of ligands) models for $3d^n$ ions in cubic octahedral sites. The calculated results (in particular for NaCrSe2) based on the two-SO-coupling-parameter model are closer to the observed values than those based on the one-SO-coupling-parameter model, suggesting that for calculations of the g factor of $3d^n$ ions in covalent crystals the two-SO-coupling-parameter model is preferable to the one-SO-coupling-parameter model. The reasonableness of the calculated results from the two-SO-coupling-parameter model is discussed.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-field Theory; Spin-orbit Coupling; Cr³⁺; NaCrS₂; NaCrSe₂.